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Isotropic Coordinates and Schwarzschild Metric 
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Written in terms of isotropic coordinates r, t, the Schwarzschild metric as usually 
given is static, i.e., admits a timelike Killing vector for all values of r and t. 
Therefore the region within the event horizon cannot be accounted for. This 
deficiency is remedied here, by finding the general spherically symmetric vacuum 
metric in isotropic coordinates. 

1. I N T R O D U C T I O N  

The Schwarzschi ld  metric,  i.e., the spherical ly symmetr ic  v a c u u m  sol- 
ut ion of  Einstein 's  equat ions,  is t radi t ional ly derived (e.g., Rindler,  1977) 
in canonical ,  or curvature,  coordinates  (R, 0, ~b, T): 

ds2= _ y - 1  d R 2 _  R 2 dw2 + y d T  2 (1) 

where  doJ 2 := dO 2 + sin 2 0 &b 2, y := 1 - 2 M / R ,  and M is a constant  o f  integra- 
tion, t aken  as nonnegat ive  for  physical  reasons.  When  the metr ic  is to be 
exhibi ted in some other  coordinate  system this is usually,  though  not always 
(e.g., Buchdahl ,  1981), achieved by appropr ia te  t r ans fo rmat ion  of  (1). A 
frequent ly  recurr ing example  of  this is the case of  isotropic  coordinates  
(r, 0, ~b, t) which are such that  the metric  has the generic fo rm 

ds 2 = - A 2 ( d r 2  + r 2 do) 2) + B 2 dt 2 (2a) 

Atmost  wi thout  except ion the required t r ans fo rmat ion  is given without  
further  c o m m e n t  (e.g., Adler,  Bazin, and Schiffer, 1965; Anderson,  1967; 
Landau  and  Lifshitz, 1975; Misner,  Thorne ,  and  Wheeler ,  1973 ; Papape t rou ,  
1974; Rober t son  and Noonan ,  1968; Synge, 1969; Tolman,  1934; Weinberg,  
1972) to be  

R =  r( l  + m / 2 r )  2, T =  t (3) 
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which makes 

A 2 = (1 + M / 2 r )  4, B 2 = (1 - M/2r)2(1 + M / 2 r )  -2 (2b) 

However, (3) is evidently deficient in that it implies a least value ( = 2 M )  
of R, when r = �89 concomitantly with the invariance of (3) and therefore 
of  (2a) under  the inversion r = ME/4r '. As r goes from oo to 0 the region 

outside the event horizon Y( is covered twice; and the region 5 within 
Yg is unaccounted for. Of course, this was to be expected since, whereas 
(1) does not admit a timelike Killing vector in 5, any metric (2a) with 
t-independent A and B is static and so cannot cover 5. In short, instead 
of  seeking a transformation R = R(r) ,  T =  t of  (1) one has to look for a 
more general transformation 

R = R(r, t), T =  T(r, t) (4) 

which takes (1) into (2a), with A and B now functions of r and t. This is 
achieved in Section 2. Whereas R(r, t) is comparatively simple, T(r, t) is 
rather less tractable. In Section 3 the functions A and B are obtained 
explicitly. Finally, Section 4 concerns the event horizon in some detail with 
particular reference to the existence of coordinate singularities. 

2. THE FUNCTIONS R(r,  t) AND T(r,  t) 

The transformation (4) will take (1) into a metric of  the generic form 
(2) if 

y - l R ? -  y T  f = A 2 (5) 

- y - l R t 2 +  yTt 2 = B 2 (6) 

y-IR~T, - yT~T, = 0 (7) 

g = rA (8) 

where subscripts denote partial derivatives. Eliminating T, and Tt between 
the first three of  these, there comes 

A-2R f - B-2Rt 2 = y (9) 

At this point it is advantageous to fall back on the field equation 7"14-- 0, 
i.e. (Tolman, 1934), 

(In A ) r t -  (ln A)t(ln B) r - -0  

which implies that 

A t / A  = f ( t ) B  (10) 

where f ( t )  is an arbitrary (nonconstant) function of  t whose range is required 
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to be 0___f___oo. An equation for R now follows on eliminating A and B 
from (9) by means of (8) and (10): 

R 2 =  - 2 M R + R 2 + f 2 R  4 (11) 

where x := Inr.  (It follows from the equations above that A 2 and B 2 are 
nonnegative, whatever the sign of 7.) 

Since R~ and R are nonnegative, (11) requires that 

f 2 R 3 + R - 2 M > - O  (12) 

If  X := M f  this implies that R >- q / f  where q is the real root of the equation 

q3 + q = 2X (13) 

i.e., 

q = [(X2"[-~77)1/2"3VX] 1/3 -- [(X2"~- 1 )  1/2 --X] 1/3 (14) 

R is evidently an elliptic function, granted that M # 0. In fact, equation 
(11) is satisfied by 

where 

R(r, t) = Mk  c+  1 (15) 

c:=cn(hx + blrn) (16) 

Here b is an as yet arbitrary function of t and )t, m, h, k depend on t alone: 
given a value of X the value of q is obtained from (14) and that of X in 
turn from the relation 

Then 

q2 = 2X/ (1-4) t  DV~2) (17a) 

m = (1-�89 - ) t  2) (17b) 

h = [(1 - A2)/(1 -4A + A2)] 1/2 (17c) 

k = ( 1 - 4 1  + x2)/(1 - x )  (17d) 

The behavior of these functions is briefly analyzed in Appendix A. 
It is advantageous to write b := h In a so that the argument hx + b is 

h In (a t ) :=  ~, say. In fact a(t) must be a constant, as will be shown at the 
end of this section. As a matter of convenience I shall take a = 1, except 
where otherwise indicated. Further, it is already clear from equation (11) 
that R is indifferent to the sign of x. Consequently it suffices to adopt the 
convention r-> 1. (Note that invariance under sign reversal of x amounts 
to invariance of ds 2 under the inversion r--> 1/r.) 
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By inspection of (14) and (17a), A only goes over the narrow range 
0-< A-< 2 - , / 3 (  := A*) as X goes from 0 to oo. R takes its least value 

Ro:= 2Mk/(1-A ) (18) 

when c = 1. Therefore 

yo := - 12M/Ro = _q2 (19) 

This value of  3' clearly belongs to points of 4. More generally points of t 
have R < 2M, i.e., 

e >  ( 1 - 2 A - A z ) / ( a + 2 A - A  2):= ~ (20) 

According to (15) R can take values arbitrarily close to zero only if k 
is sufficiently small, k ~ 0, however, implies that A ~ A* and X ~ oo. There- 
fore, retaining only dominant terms in (A2), (20) becomes, with m * =  
J(2+~/3), 

cn(31/4wxlrn *) > A* (21) 

Explicitly, 

X </3X -1/3 (22) 

where/3 is a number whose approximate value is 1.1129. 
When X-->0 the dominant terms of (A1) reduce (15) to 

R = M(1 + l /c)  + O(X 2) (23) 

and (Abramowitz and Stegun, 1975) 

c = sech x+ O(X 2) (24) 

Exceptionally choosing a = 2/M, (23) becomes just (3) if terms O(X 2) be 
disregarded. This is certainly legitimate when 

2M<< r<< 2M/x  (25) 

It is sometimes useful to represent R by its series in ascending powers of 
x. Inserting the power series for e in (15) one finds that 

R ( a - 4 A + A  2) ( I + A )  2 ( l + A ) 2 ( l + 8 A + A 2 )  4 
2 M -  ( l - A )  2 + 4(1 - A ) ~  x2+ 4 8 - ~ -  ~ ) t  ~ - ~ )  x 

q-(l+A)2(l+52A +138A2+52A3+A4)xS+O(x8) (26) 
1440(1 - A )2(1 -- 4A + A 2)2 

This is consistent with (24), (25) since when A = 0 one has just the initial 
terms of the series for �89 +cosh  x). 

While R(r, t) presents a reasonably simple appearance the same can 
hardly be said of T(r, t). To begin with, if one uses (8) and (11) in (5) one 
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immediately finds that 

T~ =fR~/~, (27) 

the sign on the right having been chosen arbitrarily. Inserting the explicit 
form of R as given by (15) there comes 

M2k3f ~ x ( c+  1) 3 dx 
T ~--~--/j  ( c_A)2(c_K)  

The substitution z := c then leads to the result 

M2k3f fl (Z"~- l )  3 dz 
r h ( 2 - k )  .~ (z_A)2(z_K)[(l_z2)(ml+mz2)],/2 ~-O(t) (28) 

where m l : = l - m  and 0( t )  is an arbitrary function of  t. Now set x = 0 .  
Then T = 0 ( t )  and Rx=0 ,  while according to (18), (19) R # 0 ,  y # 0 .  
Therefore Tx # 0 and (7) implies that Tt =0.  Thus ~b(t) is a constant which 
may be taken to be zero. 

Evidently the integral in (28) is expressible in terms of known functions. 
It is, however, so cumbersome that it will suffice to set down its generic 
form. To this end, let the notation analogous to (16) be extended to the 
Jacobian elliptic functions sn and dn and to the incomplete elliptic integrals 
of the second and third kinds. For example, ~ ( n )  stands for the incomplete 
elliptic integral of the third kind ~ ( n ;  ~:lm) (cf. Abramowitz and Stegun, 
1975). Then I find that 

T/m2f  = G1H(gl) + G2II(g2) + G3[artanh(g3d/c) - artanh( g3)] 

+ G4[artanh(g4d/c) - artanh( g4)] + Gssd/(c- ;t ) 

+ G6E+ G7( (29) 

where Ga . . . .  , (37, gl , .  �9 �9 g* are all elementary algebraic functions of A. 
When x is sufficiently small one may also use (26) directly in (27). One 

so finds that 

2M(1-4A+A2)3/2( ( l + h )  4 x 3 
T -  (2h)a/2(l_h) 2 x-~ 24A(l_4A+h2) 

(1 + A)4(3 -4A + 34A2-4A3 + 3A 4) ) 
192A2(1-4h +h2) 2 xS+ �9 � 9  (30) 

The constancy of a (t) can now be inferred as follows. Given h (0 < h < 
h*), choose a value of x so small that only dominant terms of (26) and 
(30) need be retained when finding the derivatives of R and T: 

R =: p + o-x 2, T =: rx 
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Recall that here x stands for ln[a(t)r]. Equation (7) now requires that 

[(1-4A + A2)2orp,~ --2AE'/'Ta]At = 2A2"r2at/a 

The factor multiplying At on the left vanishes identically, so that at must 
vanish. 

3. A(r, t) AND B(r, t) IN EXPLICIT FORM 

In view of (8) and (16) one has 

A = Mkr- l (c+ 1) / ( e -  A) 

Next, according to (10) 

B = A , / f A  

(31a) 

The explicit evaluation of At is an elementary but tedious task, for not only 
k and A, but h and the parameter m of e are all functions of t. In particular 
one thus requires the derivative of e(~:) with respect to m, with ~: held fixed: 

2mmlOc( r / dm = E -  m l r  m s c / d  

One finds eventually that 

A, ~ (A + 1)sd [ '1-4A + A 2 [ (1-�89 
B = ~  [ ( 2 - A ) ( r  ~E ~1---~2"~-~] 

( 7 -4A+A 2) ] 1 (3 -2A+) t  2) ~[ 
4 2(1_4A+A2) e j  q - -  (31b) c - ~  ( 1 - ~ ) - 0 :  4 - ~  a2)J 

4. THE EVENT HORIZON 

When one wishes to contemplate regions containing points of ~ one 
should use coordinates such that the metric is nonsingular on ~, for example, 
Kruskal-Szekeres coordinates (e.g., Buchdahl, 1981). The metrics (1) and 
(2), on the other hand, have coordinate singularities just on ~, i.e., when 
(for all values of t) R = 2M and r = �89 respectively. What is the situation 
when the metric is (2a), with A and B given by (31)? 

The angular variables 0, ~b may be left aside, as usual. Then the points 
of ~ must evidently satisfy the condition 

e = K ( 3 2 )  

(32) can be put into a form which exhibits ~ explicitly as a function of A 
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(i.e., of  t): 

= F(arccos KIm ) (33) 

where F denotes the elliptic integral of the first kind in the notation of 
Abramowitz and Stegun (1975). (See Appendix B for some additional 
detail.) 

Now, inspection of  (31a) shows that A 2 is well behaved in a neighbor- 
hood of  Y( and it is everywhere positive. With regard to B 2 the situation is 
not so straightforward. One may use (26) in the relation B = R t / f R  to infer 
that for sufficiently small values of A 

fB/A,  = - 2 +  14A2+!~ h3+ O(A 4) (34) 

where (33) has been used. (Recall that A ~ 0  implies that ~-~0.) On the 
other hand, as A ~ A* both e -  h and 1 - 4A + h 2 go to zero. Therefore the 
right-hand member of (3 lb) is dominated by the term containing the explicit 
factor ~:. Taking 3 . * - h  to be sufficiently small, one infers that 

fiB~At ~ j (  h * - A) -2 (35) 

where the constant j > 0. (I find that j ~ 0.62486.) Since M ~ 0 set M = �89 as 
a matter of  convenience. Then X = i f  and according to (A1), (A2) 

A ~ 1 - 3-1/2f-2/3) ( f .+  ~ )  

so that by (34), (35) 

~-2ft (f--) 0) (36) 
n ~ L f f4 /3 f t  (f .-) oo) 

where j '  is a positive constant. If  B =: H ( f ) f t  it follows from (36) that H 
vanishes somewhere in the range o f f ,  say, at f = f l .  I f f l = f ( t l )  and rl is 
the corresponding value of  r calculated from (33), the 2-metric do-2: = 
- A  2 dr2+ B 2 dt 2 is s ingulara t  the point (rl, tl), a conclusion not vitiated 
by the presence of the factor ft in B. More generally there evidently is a 
line along which do -2 has a coordinate singularity. 

APPENDIX A 

q, A, h are monotonically increasing and m, k are monotonically 
decreasing functions of  X(>-0). re(g)  only varies over a very small range, 
viz. m ( 0 ) = l ,  m(oo)=�88 Numerical values of the various 
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p a r a m e t e r s  for  se lec ted  values  o f  X are shown in the  table  below.  

x 0.1 0.2 0.5 1.o 2.0 5.0 

Buchdahl 

10 

q o.193 0.355 0.682 1.ooo 1.379 2.000 2.592 
A 0.017 0.050 0.122 0.172 0.206 0.234 0.247 
rn 0.992 0.977 0.953 0.942 0.937 0.934 0.933 
h 1.036 1.116 1.369 1.682 2.100 2.839 3.574 
k 0.947 0.843 0.599 0.414 0.274 0.153 0.098 

As g ~ 0  

q = 2X - 8X 3 + O(X 5) 

A = 2X 2 - 32X4+ O(X 6) 

m = 1 - X2q" 20X4-t - O(X 6) 

h = 1 + 4 X 2 -  44)(4+ O(X 6) 

k = 1 - 6X 2 + 88X 4 + O(X 6) 

while  as X --> o0, i f  oJ := (2X) 1/3 

q = (.0 --160--1+ 0(0)  -3) 

A = A * (1 - 3-1/2w-2) + O (0)-4) 

m = m* + 0(0)  -4) 

h = 31/4w + 0(0)  -1) 

k = ( ` / 3  - 1 ) w - 2 +  0((/) -4) 

The a p p r o x i m a t i o n  

(,~'2 - , /3) 
(m* = ~(2 + ` / 3 )  

(A1) 

(A2) 

lOxZ +48`/3X4 ] j (A3) 

which  is b a s e d  sole ly  on  (A1) and  (A2) gives a s imple  heur is t ic  p ic tu re  o f  
the  d e p e n d e n c e  o f  A on g. I t  is numer i ca l ly  sa t is factory.  

A P P E N D I X  B 

A c c o r d i n g  to (33), s ~ is a s ing le -va lued  func t ion  o f  A, bu t  x is not:  as 
h goes f rom h to h*,  s ~ increases  m o n o t o n i c a l l y  f rom 0 to ~:*~ 1.845538, 
bu t  h -1 dec reases  f rom 1 to 0. s ~ m a y  be wri t ten  as a series in a scend ing  
powers  o f  A1/2: 

~ = (8A)1/2[1 +~ A 19 2 + ~ A  + O(A3)] (B1) 
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This may be used to construct an elementary, rather satisfactory, approxima- 
tion to ~ in closed form, i.e., 

1/2 2 19 2 151 3 =(8A)  ( I + ~ A + ~ A  + ~ a  ) (B2) 

the value of the coefficient of A3 being such as to ensure that when a = A* 
(B2) reproduces ~* with six-figure accuracy. 
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